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Based on a qualitative and numerical analysis of the stability of dynamic regimes of the crystallization 

process in a metastable solution-crystal system, resonance conditions are investigated in the case of  periodic 

external disturbances of  the temperature of  the medium. 

The formation the structure of a substance during crystallization from a solution under metastable 

conditions depends on both the process conditions and the kinetics of phase transformation [1-4 ]. Solid phase 

growth often proceeds in a vibrational mode [5-7 ], which is one of the reasons for a laminated structure in crystals. 

Moreover, such phase transformation may take place in the combined processes of monomer polymerization and 

polymer crystallization [8, 9 ]. Theoretical studies of nonequilibrium phase transformations on the macrokinetic 

level are important because of the need to control these phenomena in process installation. 

The goal of the present work is to study the stability of possible stationary regimes of nonequilibrium 

crystallization in a homogeneous solution-crystal system and to analyze the possible response of the system to an 

external periodic disturbance. 

We will consider a nonstationary process of crystal growth from a single solution in a cylindrical crystallizer 

with semipermeable walls. Supersaturation X w is maintained on the crystallizer walls at the temperature T w. It is 

assumed that the growth of a new phase proceeds in the bulk at a finite rate and depends on the temperature 

according to the Arrhenius law [10, 11 ]: 

dX - ( x  - X~ K exP - R-~ ) " 

Analogously, the growth rate of crystals in a single-substance solution with a small concentration of 

impurity is described. For instance, in [11 ], the effect of raffinose on the growth rate of saccharose crystals is 
investigated. 

The temperature dependence of substance solubility is taken into account according to the exponential law 

[1, 21 

(+,) X o = K 1 exp - ~ . 

It is assumed that the thermophysical characteristics of the solution are constant. 

A macrokinetic one-dimensional model is represented by a system of diffusion equations for the solute 
concentration and the thermal conductivity. In terms of dimensionless variables we have 
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Here 

is the growth rate of crystals; 

,m xo(  )l,exp( 1 ) 

R X at r 
O = ~ T,  Y = Xmax "r = -~- s r 0 r0 

are the temperature, concentration, time, and coordinate, respectively; 

D RLXmax E1 K r 2 .  K1 
L e = - - ,  q -  - - "  U=--E--; k = - -  k 1 -  

a p c E  ' a ' Xma x 

(4) 

are the Lewis number, heat of phase transformation, activation energy, frequency factor, and solubility parameter, 

respectively; Xma x is the solute concentration at the limiting supersaturation required for the onset of crystallization. 

It is assumed that Xw -< Xmax. 
The presence of nonlinear sources in (I)-(4) makes the crystallization dynamics intricate. Therefore, prob- 

lem (1)-(4) is first simplified from a spatial to a zero-dimensional dynamic problem [12, 13 ]. To investigate the 

stability of possible stationary states of the simplified dynamic system, the first Lyapunov method is used [14 ]. 

Then, using the results of the zero-dimensional approximation, the stability of stationary regimes of the spatial 

problem is studied numerically. Many authors use this approach for qualitative analysis of solutions of distributed 

problems [15-19 ], which allows design of a numerical experiment aimed at determining the unstable states of model 

(1)-(4). 

Changing from distributed equations (1)-(3) to equations with lumped parameters is performed by 

approximating the spatial derivatives in Eqs. (1) by finite-difference analogs. The continuous set of points of the 
spatial coordinate on the segment [0, 1 ] is replaced by a discrete set consisting of three points, namely, the two 

boundary points, at which functions are prescribed by boundary conditions, and the central point, at which the 

functions are unknown. Thus, problem (1)-(4) is reduced to a dynamic system the number of whose equations is 

equal to the number of unknown functions [ 12 ]. 
The zero-dimensional model produced by such a transformation is described by the system of two ordinary 

differential equations 

d Y  
07; - - - -  6 Le ( Y -  Yw) - w -  P1 (Y, O) ;  

dO 
= 6 ( O  w - O )  + qw ~ P2  ( Y ,  O )  ; T = 0 : Y = Yin,  O = O i n .  dr 

(5) 
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The  stability of solutions of system (5) is investigated in two stages. First, the possibility of the existence 

of nonunique stat ionary regimes and, second, the stability of the determined unique and multiple steady states 

(equilibrium states) are investigated. 

The  coordina tes  of the parametr ic  space of nonunique  regimes of the ze ro-d imens iona l  model  are 

determined from the nonlinear algebraic equations 

P i ( r s , % ) = 0 ,  , = 1 , 2 ,  (6) 

by the bifurcation diagram method [20 ]. If we eliminate Ys from Eqs. (6) and solve them for one of the parameters,  

e.g., Yw, then we obtain the equations of a bifurcation curve in the following form: 

| - Ow 6 1 ] (1)+ Yw - q k exp ~ Le + k 1 exp - Oss " 
(7) 

Expression (7) relates the coordinates of the stationary states O s to the concentration Yw. As is seen from (7), Yw 

changes nonlinearly with @s, and in the certain range of Yw the dynamic system (5) has three stat ionary states. 

The bounds of Yw at which nonunique states are possible are determined from the extreme points of bifurcation 

diagram (7). On this basis, a second equation for determination of the bounds of multiple regimes in the parametric 

plane may be derived. For this, the r ight-hand side of (7) is differentiated with respect to O s and equated to zero. 

The equality obtained is solved for the parameter  q: 

1 
U k 1 exp - Oss 

2 
6 (| - Ow - Os z) Os 

k e x p ( O f i - ~ )  Le 

(8) q = 

Parametric equations (7) and (8) determine the domains of q and Yw in which a nonequilibrium crystallization 

process in the system under  consideration may proceed in the regime of multiple stationary states. For concrete 

values of the other  parameters in Eqs. (7) and (8) the ranges of q and Yw are calculated in which the zero- 

dimensional problem has multiple stationary solutions. 

Figure la  shows nonuniqueness domains (solid line) in the q, Yw plane for two values of k. For parameter  

values in the region of wedge I, three stationary states may exist: low-temperature,  moderate- temperature ,  and 

high- temperature  states. The  moderate- temperature  state is unstable.The process for upper or lower states is 

determined by the initial state of the system. For parameter values outside region I only a unique stat ionary state 

is realized. In region II, this state is low-temperature,  while in region III this state is high-temperature.  

The  posit ion and dimensions  of the nonuniqueness  domains are de te rmined  by  the condit ions for 

conducting the process and its kinetics. With increasing parameter  k, the nonuniqueness bounds are shifted toward 

lower q and higher Yw values. It may be said that with increasing reactor size r0, the multiple regimes can occur 

at lower concentrations for solution supersaturation Xma x. 

The stability of possible stationary states of simplified problem (5 ) i s  studied by a perturbation method 

[14 ]. The  coefficients of the characteristic (quadratic) equation of the linearized model are of the form 

(9) A = (p )g - ( e l ) ' O  

~  �9 (10) 

The equilibrium state is stable if the real parts of the roots of the characteristic equation are positive. Then  from 

the Routh-Hurwitz  conditions or a direct analysis of the roots of the characteristic equation it follows that for the 

equilibrium state to be stable, the coefficients of (9), (10) must be positive. Parametric equations of the boundaries 

of possible positions of equilibrium are determined from equality of coefficients (9) and (10) to zero. Equations of 
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Fig. 1. Domains of nonuniqueness (a) and instability (b), U-- 0.5; In kl -- 7, 

O w = 0.05; solid lines, zero-dimensional model; dashed lines, one-dimensional 

model: a) Le = 0.03; In k -- 15 (1), 14.5 (2); b) In k = 15.5; Le -- 0.01 (1); 

0.04 (2); 0.1 (3); 1' and 2', parametric variants for Figs. 2, 3. 

the boundary of saddle-type instability are specified by expressions (6) and A = 0. For problem (5), the parametric 

equations of the saddle boundaries and the multiple stationary states coincide. Then the mean unstable state is a 

saddle (A < 0). 

Expressions (6) and o. = 0 determine the limits of stability of the positions of equilibrium "focus and node"; 

at o. < 0 they are unstable. One of the parametric equations is specified by expression (7) for Yw, and the other 

has the form 

q = 1 

  lexp( ) 
6 [ O  s - O w - O s (Le + 1) ] 2 

( , )  ~  
k exp - Oss 

(11) 

Figure lb shows the instability limits (solid line) calculated by Eqs. (7), (11) at different Le values. Closed 

region IV corresponds to unstable equilibrium positions. For the parameters q, Yw of this region self-oscillations 

may develop in the solution-crystal system. Instability region IV exists only for a certain Le range. With increasing 

or decreasing Le number,  only the saddle-type instability is manifested. For q, Yw values outside region IV, the 

equilibrium positions are stable. 

The position and dimensions of the instability regions also depend on the process conditions and its 

kinetics. Substances with lower activation energy of self-diffusion are characterized by a large instability region, 

with the instability boundaries being displaced toward smaller Yw and larger q. With increasing reactor radius, the 

region of self-oscillations increases as well but only with a shift in the opposite direction. 
R e l a t i o n s  (6) and  o . 2  - -  4A = 0 d e t e r m i n e  an  in te r face  be tween  foci (o2 _ 4A < 0) a n d  nodes  

(o2 _ 4A > 0). Parametric equations determining this interface are described by (7) for Yw and a quadratic 

equation for q (not given beCause of its bulky form). Thus, we have two pairs of equations for the focus-node 

interface that  specify the domains of existence of these equilibrium positions. 
Results of an approximate qualitative analysis of the stability of the stationary states of problem (5) have 

been confirmed by its numerical solution. System (5) is nonlinear; it was solved by tested numerical methods [21 ]. 

A numerical experiment showed that the nonuniqueness boundaries determined theoretically by formulas (7), (8) 
and numerically, in fact, coincide. 
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Fig. 2. Multiple regimes, Yw --- 0.6; q = 2.7 (variant 1' in Fig. la): a) time 

variation of functions for the zero-dimensional (solid line) and one- 

d imensional  (dashed lines) models; b) s ta t ionary  profiles of high-  

temperature (1) and low-temperature (2) regimes. 

Figure 2 (solid line) presents results of a numerical solution in the case of multiple stationary states for 

the parameters of point 1' in Fig. la. Depending on the initial state of the system, the crystallization process 

proceeds in either a high-temperature (line 1) or a low-temperature (line 2) regime. Temperature values in the 

lower Os low and upper | up stationary regimes, determined from both (6) and (5), coincide up to the third decimal 

place and are as follows: | low = 0.052; | up = 0.061. 
The high-temperature regime is characterized, as compared to the low-temperature one, by strong 

supercooling (Os low - Ow < Os up - | and a high crystallization rate (% ]ow -- 0.004; ws up = 0.024). These 

results agree with the experimental data in [1, 2 ], which show a considerable increase in crystal growth rate with 

increase in temperature. Thus, by regulating the initial conditions of crystal growth, one may control the crystal- 

lization process. 
Results obtained for the nonunique stationary states of zero-dimensional simplified model (5) were used 

as a basis in a numerical experiment concerned with determination of multiple and self-oscillation regimes of 

one-dimensional problem (1)-(4). This problem was solved by a finite-difference method according to a 

conventionally stable explicit scheme [21 ]. In each time layer the time step was corrected proceeding from the 

stability condition for Eqs. (1). 

The nonuniqueness boundaries obtained for the one-dimensional problem are represented by a dashed line 

in Fig. la. The nonuniqueness region of the one-dimensional model is smaller than that of the zero-dimensional 

model (the solid line). The results of an approximate analytical investigation and numerical solutions of both models 

for parameters values inside the "dashed" wedge are in both qualitative and quantitative agreement. Thus, the 
dashed line in Fig. 2a shows the numerical solution of problem (1)-(4) for variant 1' of Fig. la for values of the 

temperature Oar and concentration Yav averaged over the crystallizer radius. Stationary values of layer-averaged 

temperatures in the lower and upper regimes are as follows: Oar low = 0.053 and Oar up = 0.059. 
Figure 2b shows stationary profiles of the temperature, concentration, and growth rate of crystals for the 

high-temperature (line 1) and low-temperature (line 2) regimes. Nonlinearity of the process in a metastable 
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Fig. 3. Self-oscillations for the one-dimensional model, Yw = 0.5; q = 1.48 

(variant 2' in Fig. lb). 

solution-crystal system is manifested in the formation of spatial structures. In the low-temperature regime, crys- 

tallization proceeds, in fact, in the bulk and at a lower rate of phase transformation than in the upper one. In the 

high-temperature regime, a crystallization front is established in the middle part between the axis and the walls. 

A numerical study of the self-oscillation regimes of the one-dimensional problem revealed that processes 

of diffusion of a substance and heat exert a stabilizing effect on nonequilibrium crystallization since the instability 

region of the oscillatory solutions of the one-dimensional model (Fig. lb, the dashed line), just as for the nonunique 

solutions, is smaller than the corresponding region of the zero-dimensional model. 

An example of the self-oscillations obtained is given in Fig. 3 for the parameters of point 2' in Fig. lb. The 

period of these oscillations Tz-.~ 11 agrees with that calculated in a qualitative linear analysis of the zero- 

dimensional model using the formula 

T l=2~/~ /a  2 - 4 A  = 8 .  

The stationary values of the temperature, concentration, and growth rate of crystals for this variant determined by 

the bifurcation diagram method are as follows: O s = 0.0535; Ys = 0.441; w s = 0.0142. The nonlinear dependence of 

the solubility and the rate of phase transformation on the temperature influences the mode of oscillations. Evolution 

of the concentration proceeds, in fact, according to a harmonic law. Oscillations of the temperature and the growth 

rate have a distorted symmetry. The difference of the oscillation phase of the solution concentration from that of 

the temperature and the transformation rate is attributed to different rates of supply and removal of heat and the 

substance as well as to the kinetics of phase transformation. It may be said that the minimum oscillations pertain 

to the low-temperature state, and the maximum ones pertain to the high-temperature state. Oscillatory regimes in 

crystallization are probably one of the reasons for forming substances with a periodic structure. 

Thus, it may be concluded that the zero-dimensional lumped model reflects the dynamics of one- 

dimensional distributed model (1)-(4) qualitatively and, to a permissible accuracy, quantitatively. Therefore, 

simplified model (5) has been used to investigate the response of the considered solution-crystal system to periodic 

disturbances in the external medium. It is assumed that the temperature O w changes in time according to the 

harmonic law 

O w = A w + A d cos (co T). (12) 
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Fig. 4. Oscillations for the zero-dimensional model, Le = 0.03; In k = 15.5; 

Yw = 0.4; q = 2.84; a) damping oscillations (without disturbance); b) forced 

oscillations for a disturbance with the frequency co = 3/2o20; c) amplitude- 

frequency characteristics, Ad/A w = 0.002 (1); 0.004 (2). 

Resonance characteristics have been investigated for the stationary regime with slowly damping oscillations 

of undisturbed system (5), whose dynamics is shown in Fig. 4a. The responses of system (5) to periodic disturbance 

(12) have been studied for two disturbance amplitudes, namely, Ad/Aw = 0.002 and Ad/A w -- 0.004 with Aw = 0.05. 

Figure 4c shows amplitude-frequency characteristics (curves 1 and 2 respectively) obtained from numerical 

calculations. Here, the oscillation amplitude is the difference between the maximum and minimum temperatures 

with oscillations. An increase in the disturbance amplitude Ad causes an increase in the amplitude of forced 

oscillations and, consequently, it changes the character of the frequency-amplitude curves: the number of resonance 

peaks decreases, their region broadens, and no resonance is observed at the natural frequency co 0. At a smaller 

disturbance amplitude resonance phenomena are observed near the natural frequency coo and at the multiple values 

2/3o)0 and 3/2020 of it. 

The results obtained indicate nonlinearity of the resonance phenomena in the nonequilibrium crystal- 

lization process under consideration. This is also confirmed by a change in the character of forced oscillations with 

increase in the frequency of the external disturbance. 

We now consider the evolution of the amplitude of forced oscillations as a function of the disturbance 

frequency for Ad/Aw = 0.002. At disturbance frequencies near the natural one and smaller than coo the periods of 

the disturbing and forced oscillations increase. As the frequency co increases, the dynamics of the resultant 

oscillations changes qualitatively. For a disturbance frequency near 020, the resonance oscillations have two peaks. 

When the disturbance frequencies exceed coo, the two-peak character is more distinct and it may be said that the 

forced oscillations occur with a period that is twice that of the disturbing oscillations. With a further increase in 

the disturbance frequency, the two peaks flatten, and the oscillations become more monotonic. In this case, the 

response oscillations occur with a doubled period. Such oscillations are illustrated in Fig. 4b. The lower graph shows 

periodic disturbance (12), and the upper graph is the temperature response of the solution-crystal system to this 

disturbance. 

The proposed model of nonequilibrium single-solution crystallization (1)-(4) makes it possible to study 

nonlinear effects related to the kinetics of the process, predict formation of the structure of solids, and control 

preparation of substances with desired properties. 
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N O T A T I O N  

a, D, thermal diffusivity and diffusion coefficient, respectively; c, specific heat; E, El,  activation energy 
of solute self-diffusion and dissolution, respectively; K, K1, preexponential factor of self-diffusion and dissolution, 
respectively; Kg, growth rate constant; L, heat of crystallization; r, coordinate; r o, reactor radius; R, universal gas 
constant; t, time; T, temperature; Tz, Tl, oscillation period; w, crystal growth rate; X, solution concentration; p, 
density; ~o, frequency. Subscripts: 0, saturation or eigenvalue; d, disturbance; w, reactor wall; max, maximum 
possible; in, initial; s, steady state. 
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